

Published on Web 10/26/2010

## Linear 6,6'-Biazulenyl Framework Featuring Isocyanide Termini: Synthesis, Structure, Redox Behavior, Complexation, and Self-Assembly on Au(111)

Tiffany R. Maher, Andrew D. Spaeth, Brad M. Neal, Cindy L. Berrie, Ward H. Thompson, Victor W. Day, and Mikhail V. Barybin\*

Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045

Received September 10, 2010; E-mail: mbarybin@ku.edu

**Abstract:** The key step in accessing the title species (5), the first nonbenzenoid diisocyanobiaryl, involved an unexpected homocoupling of a 6-bromoazulene derivative. The reversible  $2e^-$  reduction of 5 was addressed electrochemically and computationally. The shifts in energies of the  $S_0 \rightarrow S_1$  and  $S_0 \rightarrow S_2$  transitions for a series of related 6,6'-biazulenyl derivatives correlate with the e<sup>-</sup>-donating/-withdrawing strength of their 2,2'-substituents but follow opposite trends. Species 5 adsorbs end-on ( $\eta^1$ ) to the Au(111) surface via one of its –NC groups to form a 2-nm-thick film. In addition, bimetallic coordination of 5's –NC termini can be readily achieved.

Azulene is an unusual aromatic hydrocarbon ( $C_{10}H_8$ ) that comprises an edge sharing combination of five- and sevenmembered sp<sup>2</sup>-carbon rings. The azulenic and polyazulenic motifs constitute attractive building blocks in the design of redox addressable, optoelectronic, and conductive materials.<sup>1–4</sup> Unlike the frontier molecular orbitals of benzenoid aromatics, the HOMO and LUMO of azulene are not mirror related and feature mutually complementary density distributions (HOMO = <u>H</u>ighest <u>O</u>ccupied <u>Mo</u>lecular <u>O</u>rbital, LUMO = <u>L</u>owest <u>U</u>noccupied <u>Mo</u>lecular <u>O</u>rbital).<sup>3</sup> This leads to a remarkably low  $S_0 \rightarrow S_1$  excitation energy for azulene derivatives and enables topological asymmetry in the electron and hole transport regimes for azulene-based frameworks.<sup>1–4</sup>



Coordination and surface chemistry of linear benzenoid diisocyanoarenes containing one or more linked aromatic rings has been the subject of growing experimental and theoretical interest,<sup>5,6</sup> particularly in the context of developing advanced materials that may support charge delocalization and transport at the nanoscale.<sup>7</sup> We have recently engaged in the quest for a novel class of linear diisocyanoarene linkers based on the nonbenzenoid 2,6-azulenic framework as represented by the homologous series **I**.<sup>1,8,9</sup> For n =1 ( $R = -CO_2Et$ ) in **I**, the orientation of the azulenic dipole can be controlled through regioselective installation and coordination of the isocyanide junction groups.<sup>8</sup> For n = 2, three different linear diisocyanobiazulenyl scaffolds can be envisioned: two symmetric featuring the 6.6' or 2.2' connectivity of the azulenic moieties and one asymmetric having the 2,6' central C-C bond. Currently, very few 2,2'-, 6,6'-, and 2,6'-biazulenyl derivatives are synthetically accessible.<sup>10</sup> In this Communication, we introduce the chemistry of the first member of the linear diisocyanobiazulenyl family that is *formally* derived by linking two 1,3-diethoxycarbonyl-2-isocyanoazulene (1)<sup>9</sup> molecules. To the best of our knowledge, the title species is not only the first structurally characterized linear biazulenyl<sup>10</sup> compound but also the sole example of a crystallographically addressed biazulenyl motif of any connectivity not embedded into a larger rigid framework.<sup>11</sup>





<sup>*a*</sup> (i) B<sub>2</sub>pin<sub>2</sub> (0.26 equiv), 10 mol % Pd(dppf)Cl<sub>2</sub>•CH<sub>2</sub>Cl<sub>2</sub>, KOAc, DMSO, 100 °C, argon atm.; (ii) HC(O)OAc, 50 °C, (iii) POCl<sub>3</sub>, Et<sub>3</sub>N, 20 °C.

Combining the 6-bromoazulene derivative  $2^8$  with bis(pinacolato)diboron (B<sub>2</sub>pin<sub>2</sub>) in the presence of Pd(dppf)Cl<sub>2</sub> (dppf = bis(diphenylphosphino)ferrocene) under the conditions specified in Scheme 1 afforded brick-red 2,2-diamino-6,6'-biazulenyl 3 in a 91% yield. Surprisingly, the best yields of this unexpected, "one-pot" homocoupling of 2 were achieved by employing a substoichiometric amount (ca. 0.25 equiv) of B2pin2. No formation of 3 was observed when the reaction was conducted in the absence of B2pin2 under otherwise identical conditions.<sup>12</sup> Interestingly, our attempts to use 0.5 equiv of B<sub>2</sub>pin<sub>2</sub> (the stochiometric quantity of B<sub>2</sub>pin<sub>2</sub> typically employed in one-pot homocoupling of organohalides via sequential Miyaura borylation/Suzuki cross-coupling)<sup>13</sup> invariably led to much lower yields ( $\leq$ 37%) of **3**. The above quite efficient protocol for the preparation of **3** evolved from our initial efforts to improve its original synthesis by Mutafuji, Sugihara et al.<sup>10c</sup> The latter involved a Pd(dppf)Cl<sub>2</sub>-catalyzed borylation of 2 with 1.1 equiv of B<sub>2</sub>pin<sub>2</sub> to isolate the corresponding 6-azulenyl-boronic ester, which was then cross-coupled with 2 using a different catalyst,  $Pd(PPh_3)_2Cl_2$ , to give 3 in a 17% overall yield.<sup>10c</sup>

Formylation of **3** with acetic-formic anhydride afforded a 79% yield of sparingly soluble chestnut-colored 2,2'-diformamido-6,6'-biazulenyl **4**, the double dehydration of which gave lavender needles of 2,2'-diisocyano-1,1',3,3'-tetraethoxycarbonyl-6,6'-biazulenyl **5** in a 34% isolated yield. The FTIR and <sup>13</sup>C NMR spectra of **5** exhibit signature peaks at  $\nu_{C=N} = 2130 \text{ cm}^{-1}$  (in Nujol mull) and  $\delta = 178.6 \text{ ppm}$  (in CDCl<sub>3</sub>), respectively, that correspond to the isocyanide termini of this air-stable compound.

It is well argued that varying the nature of the substituent in a 2-substituted azulene chiefly affects the energy of its LUMO but not HOMO.<sup>3</sup> The  $\lambda_{max}$  value for the relatively weak  $S_0 \rightarrow S_1$  transition

in the electronic spectra of **3**, **4**, and **5** in CH<sub>2</sub>Cl<sub>2</sub> appears to increase upon proceeding from **3**<sup>14</sup> to **4** (474 nm) to **5** (509 nm). This trend parallels the order of decreasing e<sup>-</sup>-donating/increasing e<sup>-</sup>withdrawing strength of the groups at the 2,2'-positions in these 6,6'-biazulenyls: NH<sub>2</sub> > --NHCHO > --N=C. At the same time, however,  $\lambda_{max}$  of the more intense higher energy band, which we tentatively assign as S<sub>0</sub>→S<sub>2</sub>, increases in reverse order **5** (390 nm) < **4** (421 nm) < **3** (459 nm). Thus, the 2,2'-substitution of the 6,6'biazulenyl scaffold provides an opportunity to simultaneously tune the wavelengths of both S<sub>0</sub>→S<sub>1</sub> and S<sub>0</sub>→S<sub>2</sub> excitations in mutually opposing directions in the visible region.



Figure 1. Molecular structure of 5 (50% thermal ellipsoids).

The solid state structure of **5** depicted in Figure 1 is remarkably symmetric with only 1/4 of the molecule being crystallographically independent. The C3–N1 bond length of 1.165(3) Å observed for **5** is typical for an isocyano N=C triple bond.<sup>8</sup> Every carboxylate unit in **5** is essentially coplanar with the azulenic moiety to which it is attached. The long axis of **5** spans 17.1 Å, as defined by the C3···C3' distance. The C6–C6' bond connecting the azulenyl rings in **5** is 1.512(4) Å long. This distance is statistically shorter than the C(sp<sup>3</sup>)–C(sp<sup>3</sup>) bond of 1.535(4) Å connecting the two sevenmembered rings in 1,1',6,6'-tetrahydro-6,6'-biazulene-1,1'-diide,  $[H_8C_{10}-C_{10}H_8]^{2-,15}$  but only marginally longer than the central C–C bond length documented for biphenyl (1.494(3)–1.507 Å).<sup>16,17</sup>

The 66.9° torsion angle between the azulenic planes in crystalline 5 is almost certainly significantly influenced by crystal packing forces. Our density functional theory (DFT) analysis of 2,2'diisocyano-6,6'-biazulenyl (5a), a truncated analogue of 5 that lacks all ester substituents, predicts the equilibrium interplanar angle of 52.0° for this model compound with the barriers to internal rotation about the C6-C6' bond to achieve the planar and orthogonal conformations being  $\Delta E(0^\circ) = 8.2$  kcal/mol and  $\Delta E(90^\circ) = 1.3$ kcal/mol, respectively. Notably, both experimental and recent DFT studies of biphenyl indicate that the  $H_5C_6-C_6H_5$  molecule exhibits the torsional angle of ca. 45° with the rotational barriers  $\Delta E(0^\circ) \approx$  $\Delta E(90^\circ) \leq 2.0$  kcal/mol in the gas phase.<sup>18</sup> While the  $\Delta E(90^\circ)$ values for both **5a** and  $(C_6H_5)_2$  are similar, the higher  $\Delta E(0^\circ)$  value for 5a reflects greater steric congestion about the central C-C bond connecting the two seven-membered rings in the planar conformation of **5a** compared to the environment of the central C-C linkage in the planar orientation of biphenyl.

Compound 1, the structure of which may be viewed as one-half of that of 5, undergoes an irreversible one-electron reduction at  $E_{p,c} = -1.55$  V vs Cp<sub>2</sub>Fe<sup>+</sup>/Cp<sub>2</sub>Fe in CH<sub>2</sub>Cl<sub>2</sub>. In sharp contrast, the cyclic voltammogram (CV) of 5 in the same solvent features a nicely reversible ( $i_{p,c}/i_{p,a} = 1.0$ ) two-electron reduction wave at the substantially less negative potential of  $E_{1/2} = -1.02$  V (Figure 2). This observation echoes the reduction behavior of the "parent" 6,6′-biazulenyl addressed by Hünig and Ort in a series of their pioneering

## COMMUNICATIONS

redox studies of various biazulenic motifs.<sup>19</sup> The persistence of 5<sup>2-</sup>, at least on the electrochemical time scale, can be attributed to the closed-shell nature of its 6,6'-biazulenide dianion framework (Figure 3, left).<sup>10b,19d,20</sup> The singlet electronic configuration of 5<sup>2-</sup> is also suggested by our DFT examination of its model 5a<sup>2-</sup>. The singlet (S) state of 5a<sup>2-</sup> is predicted to be nearly 0.7 eV less energetic than the triplet (T) state. The DFT calculations show that the reduction process 5a $\rightarrow$ 5a<sup>2-</sup> (S) is accompanied by appreciable shortening of the central C–C bond, as well as by a 30° decrease in the interplanar angle between the two azulenic moieties (Table 1). The HOMO of 5a<sup>2-</sup> (S) illustrated in Figure 3 clearly implies the significant double bond character of the dianion's central C–C linkage. Similar to 5, the CV of 3 also features one reversible reduction wave, which occurs at a more negative potential ( $E_{1/2} = -1.64$  V) compared to that of 5 due to the electron-donating nature of the  $-NH_2$  termini.



*Figure 2.* Cyclic voltammogram of **5** in 0.1 M [ ${}^{n}Bu_{4}N$ ][PF<sub>6</sub>]/CH<sub>2</sub>Cl<sub>2</sub> vs internal Cp<sub>2</sub>Fe<sup>+</sup>/Cp<sub>2</sub>Fe (1 equiv) at 25 °C. Scan rate = 100 mV/s.



**Figure 3.** Left: bis(cyclopentadienide)-like resonance form of  $5^{2-}$ . Right: DFT-generated HOMO of  $5a^{2-}(S)$ .

*Table 1.* DFT-Generated Relative Energies in the Gas Phase  $(\Delta E_{gas})$  and in Dichloromethane  $(\Delta E_{DCM})$ , Interplanar Dihedral Angles ( $\alpha$ ), and the Central C–C Bond Length (*d*) for **5a**, **5a**<sup>2–</sup>(S), and **5a**<sup>2–</sup>(T)

| Model species | $\Delta E_{\rm gas}$ , eV | $\Delta E_{\rm DCM}$ , eV | $\alpha$ , deg | d, Å |
|---------------|---------------------------|---------------------------|----------------|------|
| 5a            | 0                         | 0                         | 52.0           | 1.50 |
| $5a^{2-}(S)$  | -1.58                     | -5.92                     | 21.9           | 1.43 |
| $5a^{2-}(T)$  | -0.91                     | -5.23                     | 58.5           | 1.51 |
|               |                           |                           |                |      |

The molecule of 5 can be readily used to bridge metal centers. For example, treatment of in-situ-generated W(CO)<sub>5</sub>(THF) with 0.5 equiv of 5 in THF provided fuchsia-colored  $[(OC)_5W]_2(\mu-5)$  that features two "(OC)<sub>5</sub>W" units linked through the 6,6'-biazulenyl bridge by means of the N=C junctions. Complex  $[(OC)_5W]_2(\mu-5)$ undergoes a reversible reduction at  $E_{1/2} = -1.01$  V in CH<sub>2</sub>Cl<sub>2</sub>. This reduction potential is almost identical to that of 5 thereby indicating that the LUMO of  $[(OC)_5W]_2(\mu-5)$  is largely bridge-based. The lowest energy band ( $\lambda_{max} = 496$  nm) in the electronic spectrum of  $[(OC)_5W]_2(\mu-5)$  can be assigned to the metal-to-bridge charge transfer (MBCT), and its molar extinction coefficient ( $\varepsilon$ ) is ca. 35 times greater than that documented for the  $S_0 \rightarrow S_1$  transition for 5. Notably, the analogous MBCT for [(OC)<sub>5</sub>W]<sub>2</sub>(µ-2,6-diisocyano-1,3-diethoxycarbonylazulene) has a  $\lambda_{max}$  value of 515 nm,<sup>8</sup> whereas the corresponding transition for [(OC)<sub>5</sub>W]<sub>2</sub>(µ-1,4-diisocyanobenzene) occurs in the UV region ( $\lambda_{max} = 370$  nm).<sup>21</sup>

Exposure of a gold-coated mica substrate to a 2 mM solution of 5 in CH<sub>2</sub>Cl<sub>2</sub> without protection from air led to adsorption of 5 on

the Au(111) surface. The ellipsometric thickness of the resulting film, measured at multiple spots on the substrate, was  $20.5 \pm 2.4$ Å. This value is consistent with the molecular monolayer nature of the self-assembled film featuring approximately parallel orientation of the long molecular axis of 5 with respect to the surface normal.<sup>5</sup> Indeed, for the perfectly upright  $\eta^1$  coordination of 5 to the gold surface (Figure 4), the monolayer thickness can be expected to be approximately 19.1 Å. This estimate is obtained by adding 2.0 Å, a typical Au(0)-CNR bond length,<sup>5</sup> to the 17.1 Å distance between the two isocyanide carbon atoms in 5 (Figure 1).

The grazing incidence reflection absorption infrared (RAIR) spectrum of a freshly prepared film of 5 on Au(111) also suggests the end-on adsorption of 5 to the Au surface. Indeed, the spectrum exhibits two bands in the isocyanide stretching region (Figure 4). The higher energy band at 2170 cm<sup>-1</sup> corresponds to  $\nu_{C=N}$  of the C=N terminus of 5 bound to the gold surface. The broad nature of this band is typical for aryl isocyanide self-assembled monolayers (SAMs) on gold<sup>22</sup> and can be attributed to some inhomogeneity in the environment of the surface adsorption sites due to defects in the Au(111) film prepared via gold vapor deposition.<sup>23</sup> Notably, the  $\nu_{C=N}$  stretch for SAMs of 1 on Au(111) also occurs at 2170 cm<sup>-1.9</sup> Since the isocyanide carbon's lone pair is antibonding with respect to the  $C \equiv N$  bond,<sup>1</sup> donation of electron density from the -NC junction to gold upon chemisorption of **5** results in a pronounced (43 cm<sup>-1</sup>) blue shift in  $v_{\rm CN}$  for the goldbonded isocyanide terminus of 5 relative to that of the compound in solution. Concurrently, such coordination should induce a slight positive charge<sup>7e</sup> within the  $\pi$ -system of 5, which may lead to weakening of the C≡N bond of the unbound isocyanide group, provided there is a sufficient extent of conjugation between the two azulenyl moieties. In accord with this argument, the sharp  $\nu_{C=N}$  band at 2119 cm<sup>-1</sup> in the RAIR spectrum in Figure 4 that corresponds to the uncoordinated  $-N \equiv C$  end of 5 is depressed by 8 cm<sup>-1</sup> relative to  $\nu_{C=N}$  observed for 5 in CH<sub>2</sub>Cl<sub>2</sub> solution (or by 11 cm<sup>-1</sup> compared to  $\nu_{C=N}$  for the bulk compound in Nujol mull). Interestingly, when adsorbed on metallic gold, linear benzenoid diisocyanoarenes featuring up to three linked arylene units show  $2-9 \text{ cm}^{-1}$  red shifts in  $v_{CN}$  for their free  $-N \equiv C$  end relative to  $v_{CN}$  for the corresponding bulk substances.22b,d



**Figure 4.** Left: schematic drawing of the terminal upright  $(\eta^1)$  bonding of 5 to the gold surface. Right:  $\nu_{C=N}$  regions of (A) FTIR spectrum of 5 in CH<sub>2</sub>Cl<sub>2</sub> solution and (B) RAIR spectrum of a SAM film of 5 on Au(111).

The SAM of 5 described herein constitutes the first example of a molecular film involving a biazulenic scaffold. Accessibility of such SAMs presents a hitherto unavailable intriguing opportunity to experimentally probe<sup>7</sup> the conductivity characteristics of a 6,6'biazulenyl-based molecular wire. Further studies advancing the coordination and surface chemistry of the 6,6'-biazulenyl and 6,6'biazulenide frameworks are underway in our laboratory.

Acknowledgment. This work was supported by the NSF CAREER Award (CHE-0548212) and DuPont Young Professor Award to M.V.B. The authors thank Dr. Matthew Benning of

Bruker AXS for collecting the X-ray diffraction data for 5 and Professors Malinakova and Tunge for helpful discussions.

Supporting Information Available: Experimental procedures; spectroscopic and analytical data; details of the electrochemical, X-ray, surface, and DFT studies (PDF and CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

## References

- (1) Barybin, M. V. Coord. Chem. Rev. 2010, 254, 1240-1252.
- (1) Dai yolia, V. Cola, Chem. Rev. 2007, 20, 395–409. (b) Burdzinski, G.;
  (2) (a) Dias, J. R. J. Phys. Org. Chem. 2007, 20, 395–409. (b) Burdzinski, G.;
  Kubicki, J.; Maciejewski, A.; Steer, R. P.; Velate, S.; Yeow, E. K. L. Mol. Supramol. Photochem. 2006, 14, 1-36. (c) van der Veen, M. H.; Rispens, M. T.; Jonkman, H. T.; Hummelen, J. C. Adv. Funct. Mater. 2004, 14, Yu, Y., Johnshai, H. Y., Hulmideli, J. C. Add. Tandr. Inder. Inder. Inder. Nat. Comp. 17, 215–223. (d) Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M. Chem. Rev. 2000, 100, 1789–1816. (e) Treboux, G.; Lapstun, P.; Silverbrook, K. J. Phys. Chem. B 1998, 102, 8978–8980.
   Shevyakov, S. V.; Li, H.; Muthyala, R.; Asato, A. E.; Croney, J. C.; Jameson, D. M.; Liu, R. S. H. J. Phys. Chem. A 2003, 107, 3295–3299.
- (4) For a class III mixed-valence species, in which the electronic coupling is mediated by the 2,6-azulenedicarboxylate bridge, see: Barybin, M. Chisholm, M. H.; Dalal, N. S.; Holovics, T. H.; Patmore, N. J.; Robinson, R. E.; Zipse, D. J. J. Am. Chem. Soc. 2005, 127, 15182-15190.
- (5) Lazar, M.; Angelici, R. J. Isocyanide Binding Modes on Metal Surfaces and in Metal Complexes. In Modern Surface Organometallic Chemistry; Basset, J.-M., Psaro, R., Roberto, D., Ugo, R., Eds.; Wiley-VCH: Weinheim, 2009; pp 513–556 and references therein.
- (6) Selected recent theoretical reports: (a) Li, Y.; Lu, D.; Galli, G. J. Chem. Theory Comput. 2009, 5, 881–886. (b) Li, Y.; Lu, D.; Swanson, S. A.; Scott, J. C.; Galli, G. J. Phys. Chem. C 2008, 112, 6413–6421.
- Representative examples: (a) Choi, S. H.; Kim, B.; Frisbie, C. D. Science Representative examples: (a) Choi, S. H.; Kim, B.; Frisble, C. D. Science 2008, 320, 1482–1486. (b) Chu, C.; Ayres, J. A.; Stefanescu, D. M.; Walker, B. R.; Gorman, C. B.; Parsons, G. N. J. Phys. Chem. C 2007, 111, 8080–8085. (c) Kim, B.; Beebe, J. M.; Jun, Y.; Zhu, X.-Y.; Frisbie, C. D. J. Am. Chem. Soc. 2006, 128, 4970–4971. (d) Murphy, K. L.; Tysoe, W. T.; Bennett, D. W. Langmuir 2004, 20, 1732–1738. (e) Hong, S.; Reifenberger, R.; Tian, W.; Datta, S.; Henderson, J.; Kubiak, C. P. Superlattices Microstruct. 2000, 28, 289–303.
- (8) Holovics, T. C.; Robinson, R. E.; Weintrob, E. C.; Toriyama, M.; Lushington, G. H.; Barybin, M. V. J. Am. Chem. Soc. 2006, 128, 2300– 2309.
- (9) DuBose, D. L.; Robinson, R. E.; Holovics, T. C.; Moody, D.; Weintrob, E. C.; Berrie, C. L.; Barybin, M. V. *Langmuir* 2006, 22, 4599–4606.
- (10) (a) Ito, S.; Terazono, T.; Kubo, T.; Okujima, T.; Morita, N.; Murafuji, T.; Sugihara, Y.; Fujimori, K.; Kawakami, J.; Tajiri, A. Tetrahedron 2004, 60, 5357–5366. (b) Ito, S.; Okujima, T.; Morita, N. J. Chem. Soc., Perkin *Trans. I* **2002**, 1896–1905. (c) Kurotobi, K.; Tabata, H.; Miyauchi, M.; Murafuji, T.; Sugihara, Y. *Synthesis* **2002**, 1013–1016. (d) Morita, T.; Takase, K. *Bull. Chem. Soc. Jpn.* **1982**, 55, 1144–1152. (e) Hanke, M.; Jutz, C. *Synthesis* **1980**, 31–32.
- (11) The X-ray structure of a diazuleno[2,1-a:1,2-c]naphthalene derivative, which formally contains the 1,1'-biazulenyl motif has been reported: Ito, S.; Nomura, A.; Morita, N.; Kabuto, C.; Kobayashi, H.; Maejima, S.; Fujimori, K.; Yasunami, M. J. Org. Chem. 2002, 67, 7295-7302
- (12) A small amount of an orange-brown mixture isolated after workup in this control experiment contained 1,3-diethoxycarbonyl-2-aminoazulene (the product of debromination of **2**) as one of the major constituents. (13) Representative examples: (a) Nising, C. F.; Schmid, U. K.; Nieger, M.;
- Bräse, S. J. Org. Chem. **2004**, 69, 6830–6833. (b) Kabalka, G. W.; Yao, M.-L. *Tetrahedron Lett.* **2003**, 44, 7885–7887.
- (14) For 3, the  $S_0 \rightarrow S_1$  band is likely obscured by the lower energy tail of the substantially more intense  $S_0 \rightarrow S_2$  transition at  $\lambda_{max} = 459$  nm. (15) Bock, H.; Arad, C.; Näther, C.; Göbel, I. *Helv. Chim. Acta* **1996**, *79*, 92–
- 100.
- (16) Robertson, G. B. Nature 1961, 593-594.
- (17) Trotter, J. Acta Crystallogr. **1961**, *14*, 1135–1140.
- (18) (a) Johansson, M. P.; Olsen, J. J. Chem. Theory Comput. 2008, 4, 1460-1471. (b) Bastiansen, O.; Samdal, S. J. Mol. Struct. 1985, 128, 115-125.
- (19) (a) Hünig, S.; Ort, B. Liebigs Ann. Chem. 1984, 1905–1935. (b) Hünig, S.; Ort, B. Liebigs Ann. Chem. 1984, 1936–1951. (c) Hünig, S.; Ort, B.; Hanke, M.; Jutz, C.; Morita, T.; Takase, K.; Fukazawa, Y.; Aoyagi, M.; Ito, S. Liebigs Ann. Chem. **1984**, 1952–1958. (d) Hünig, S.; Ort, B. Liebigs Ann. Chem. **1984**, 1959–1971.
- (20) Ito, S.; Okujima, T.; Morita, N.; Ohta, K.; Kitamura, T.; Imafuku, K. J. Am. Chem. Soc. 2003, 125, 1669–1680.
- (21) Grubisha, D. S.; Rommel, J. S.; Lane, T. M.; Tysoe, W. T.; Bennett, D. W. Inorg. Chem. 1992, 31, 5022-5027
- (22) (a) Toriyama, M.; Maher, T. R.; Holovics, T. C.; Vanka, K.; Day, V. W.;
  Berrie, C. L.; Thompson, W. H.; Barybin, M. V. *Inorg. Chem.* 2008, 47, 3284–3291. (b) Swanson, S. A.; McClain, R.; Lovejoy, K. S.; Alamdari, N. B.; Hamilton, J. S.; Scott, J. C. *Langmuir* 2005, 21, 5034–5039. (c) Stapleton, J. J.; Daniel, T. A.; Uppili, S.; Cabarcos, O. M.; Naciri, J.;
   Shashidhar, R.; Allara, D. L. *Langmuir* 2005, *21*, 11061–11070. (d)
   Henderson, J. I.; Feng, S.; Bein, T.; Kubiak, C. P. *Langmuir* 2000, *16*, 6183-6187
- (23) Lazar, M.; Angelici, R. J. J. Am. Chem. Soc. 2006, 128, 10613-10620.
- JA108202D